
Charles University, Prague

Distributed Systems Research Group

SOFA NetBeans Module
an introductory guide

Revision 1.0

June 2003

Contents

1 Module’s Essentials 3

1.1 Introduction . 3

1.1.1 License Conditions 3

1.1.2 Availability . 3

1.1.3 Supported Versions of the Net-
beans IDE . 4

1.2 Structure of the Module 4

1.2.1 SOFA TIR Browser 4

1.2.2 SOFA CDL Compiler 6

1.2.3 Visual Designer 7

1.2.4 Options for the Module 8

2 The Module In Action 10

2.1 Installing the Module 10

2.2 A Sample Example 13

2.3 Designing Components 14

2.4 Compiling CDL Files 21

2.5 Using the SOFA TIR Browser 22

1

2.5.1 Transactional nature of TIR 25

3 Troubleshooting 27

3.1 F.A.Q. 27

3.1.1 Security policy not set 27

3.1.2 Profile locked . 27

2

Chapter 1

Module’s Essentials

1.1 Introduction

The purpose of this document is to provide basic information
about the SOFANBModule, which is a plug-in module to the
NetBeans integrated development environment. The module was
developed by the Distributed Systems Research Group(DSRG) at
Charles University, Prague to provide Java developers a tool for
working with the SOFA component model the DSRG members
have developed.

1.1.1 License Conditions

The module is distributed under the GNU Lesser General Public
License.

1.1.2 Availability

The module can be downloaded from the ObjectWeb Forge. It is
distributed as a standard *.nbm file ready to be installed into the
NetBeans IDE, see section 2.1

3

http://www.netbeans.org
http://nenya.ms.mff.cuni.cz
http://www.cuni.cz
http://nenya.ms.mff.cuni.cz/projects.phtml?p=sofa&q=0
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://debian-sf.objectweb.org/projects/sofa/

1.1.3 Supported Versions of the Netbeans IDE

The described module supports NetBeans versions 3.4.1 and the
beta, RC1 and final releases of the version 3.5. These versions
were current at the time of the last revision of the module. We
anticipate that the module will be compatible with all further ver-
sions until the NetBeans version 4, which is expected to bring
major changes into the OpenAPI used for writing NetBeans plug-
ins.

1.2 Structure of the Module

Three main parts can be recognized in the module: a TIR browser,
a compiler of CDL files and a tool for visual creation of SOFA com-
ponents. However, these parts are not independent — in fact, the
most common use case of the module is that first a component
is visually designed using the Visual Designer, subsequently it is
compiled using the CDL compiler that outputs results of compila-
tions into the TIR and finally the Java mappings can be generated
calling the particular action in the TIR browser’s context menu.

1.2.1 SOFA TIR Browser

The TIR (Type Interface Repository) browser can be used inde-
pendently on the rest of the module’s functionality. The SOFA
TIR is a standard Java RMI server that uses RMI registry as a
naming service and thus can be run anywhere on the Internet. Af-
ter connecting to it, the TIR browser allows users to examine the
TIR’s contents. In the case of SOFA, the TIR contains types of the
CDL language including their versions and other properties. From
the browsable types, modules, interfaces, interface operations,
template frames, template architectures and providers should be

4

mentioned.

Except browsing the TIR contents, several other functions of the
TIR browser can be itemized:

• opening TIR in order to be modified by the CDL compiler
output, and closing it by commiting or aborting the performed
operations

• generating component builders and java types from the infor-
mation stored in the TIR

• creating new profiles

• inspecting properties of the types

The TIR has two operational modes: it can be set to a read-only
mode or to a read-write mode. The read-only mode is default and
means no TIR changes can be performed. Opening the TIR for
writing means starting a new transaction. During the time the
TIR is in read-write mode, its content is allowed to be modified
(e.g. by the output of the CDL compiler) and all modifications are
tracked. Eventually, the TIR must be explicitly set to the read-only
mode either by committing or aborting. Committing the changes
results in the definitive writing of the performed changes down
into the TIR, aborting them results has such an effect if the TIR
was not actually open.

Java mappings can be generated only when the TIR is set to read-
only mode (i.e. its content is committed). The code generation
is based on architectures — from any architecture a component
builder is created together with mappings of all types that are used
in its definition (especially interfaces and their elements) into a
valid Java code.

New profiles can be created in both TIR states (read-only and
read-write), however if they are created when the TIR is in the

5

read-write mode and subsequently the TIR is set to the read-only
mode by aborting, such profiles are deleted during the abort.

1.2.2 SOFA CDL Compiler

The SOFA CDL compiler is used to compile CDL source files.
The CDL stands for Component Description Language and it
defines the way components are described in the SOFA Component
Model. The definitions originate from the CORBA IDL language
but a support for defining components is added.

There are three ways to obtain a CDL source file: It is possible to

• create a file with component definitions externally and open
it via standard NetBeans menus

• use the template wizard to create and open an empty CDL
file and write component descriptions directly in the NetBeans
IDE

• use the template wizard to open a visual designer, create the
CDL file visually and generate a CDL source file from it

If the compilation fails, the TIR is automatically set to the read-
only mode aborting all operations and needs to be re-opened in
order to compile again.

If the compilation successfully passes, the output is written to the
TIR and then the TIR is used to do further processing (as described
in operations the previous section). Especially it is necessary for
the user to set the TIR to the read-only mode deciding to commit
the changes or abort them.

6

1.2.3 Visual Designer

Visual designer is a tool that helps with creating SOFA Compo-
nents. The main capabilities of the designer include:

• defining interfaces, template frames and primitive architec-
tures including interface and frame protocols

• creating compound architectures (i.e. first-level structures
of) of single components (interconnections between inter-
faces of subcomponents)

• encompassing the definitions by modules

• creating hierarchies of composed components

• specifying user-code if necessary

• saving a visually designed component in a file (with .sofa
extension)

• generating a textual ready-to-compile CDL source file into
the NetBeans IDE from the visually design

The result is usually converted into a common CDL source file and
opened in a NetBeans IDE window, where all actions as described
in the previous sections can be applied.

The sketched components can be saved on disk by the Visual
Designer (files with the *.sofa extension) in order to be re-opened
and further elaborated later in the Visual Designer. These files
are created by making some internal objects persistent, therefore
it can be used outside the Visual Designer. There is currently
no support for exporting the visually designed components into
standard graphics files.

7

1.2.4 Options for the Module

For users’ convenience, a possibility of a customization of the
module via standard NetBeans system options has been added
— choosing Tools -> Options in the NetBeans IDE pull-
down menu, the options window appears and subsequently the
item Component Frameworks -> SOFA Components contains
two sub-options: one for setting the TIR browser and compiler,
the other for setting the Visual designer.

The TIR Properties contain the following items:

8

gencodedir — a directory into which the java files (mappings of
types and component builders) will be generated; implicitly,
the user’s home directory or a working directory is set

profile — what profile from the profiles in the TIR will be chosen;
if an invalid profile is specified, an exception will be thrown

tirhost — a host on which the TIR runs; default is the localhost

tirport — a port on which the TIR listens; default is 2000

useprotocols —whether the CDL compiler should take protocols
specified in the file into consideration and test their syntax
validity; if not, the compiler ignores parts where protocols are
specified and they are not reflected in the TIR.

testprotocols — whether the CDL compiler should test confor-
mance between protocols (interface-interface and interface-
frame)

The Visual Designer Properties contain the following items:

Default module — specifies into which module the initial frame
(and interfaces) will be placed after opening the visual de-
signer; individual modules are separated by the double-colon

Default provider — specifies into which provider the initial ar-
chitecture will be placed after opening the visual designer

9

Chapter 2

The Module In Action

In this chapter, the SOFA NetBeans module step-by-step will be
presented. This will be shown on a practical level — using an
case study showing a typical task of designing and compiling a
several components components and generating Java code based
on those components. But before the module can be used, it must
be downloaded and installed into the NetBeans IDE.

2.1 Installing the Module

Having downloaded the module (the sofa.nbm file) from the
ObjectWeb Forge, it can be installed into the NetBeans IDE. You
can proceed in these steps:

(1) Click on NetBeans pull-down menu Tools -> Update Center

10

http://sofa.debian-sf.objectweb.org/sofa.nbm
http://sofa.debian-sf.objectweb.org/sofa.nbm

(2) Click on Install manually . . .

(3) Click on Add. . and load the downloaded file

11

(4) Click on Next
(5) In the new window, click on the SOFA module in the Include
in Install textfield

(6) Then click on Next
(7) After you accept the license conditions, the module will be
loaded to the NetBeans environment ready to install

12

(8) Check the SOFA version 1.8 checkbox and accept installing
the unsigned module

(9) Click on Finish and OK in the dialog box asking whether to
restart the IDE. After that, the module has been installed.

2.2 A Sample Example

Suppose you have to create a simple component application for
logging events. Those logs should include timestamps of the
events and the given date format can differ in various countries
according to local habits.

Having analyzed the problem, you have decided to use the follow-
ing components:

FDateTimeStamp — a component that provides a single inter-
face IDateTimeStamp that contains operations for various
date formats; its architecture will be primitive (i.e. directly

13

implemented in Java)

FTimeLog — a component that provides logging capabilities (in-
terface ILog) and requires the time formats in the interface
IDateTimeStamp; its architecture will be primitive

FLog — a component that provides general logging capabilities
(and requires nothing). In fact, it will be composed of the
subcomponents of the previous two component types while
delegating the logging capability the the subcomponent

FLogUtilizer — a component that may generate some events
and requires the logging (the ILog interface)

ATimeLogApp — a system component architecture that
has no provisions or requirements (it implements
::SOFA::libs::Application) but instantiates the FLog and
FLogUtilizer components as instances.

2.3 Designing Components

Before you begin to design the components, you have to choose
into which initial module respective provider the component inter-
faces and frames respective architectures will be placed. This is
done via the system options as described in section 1.2.4.

For working with SOFA components, a new NetBeans workspace
has been created by the module. The Visual Designer will create
components in docked windows within this workspace and when-
ever the *.sofa modules will be loaded. You are encouraged to
place also the *.cdl files with the CDL source into this workspace.

Provided you have already mounted a directory the files should be
stored in, click on File->New from the main menu and from the
offer of templates choose SOFA Components -> VisualCompo-
nentDesc. See picture bellow.

14

Fill the name LoggingSofaApp into the field that appears (in gen-
eral, you can leave it default) and click Finish. If the SOFA
workspace was not active, it will become active. You can see
the workspace is divided into three parts

Explorer window — displays the content (files) of mounted loca-
tions; each element (node) is a file: clicking on nodes, you
can open chosen files in the editor window

Properties window — displays various properties of a file that is
selected at the given time as an active node; for the Visual
Designer there is quite a lot of tabs with properties that will
be discussed later.

Editor window — displays the content of the node selected in
the Explorer window; for the Visual Designer, it is a docked
window with the actual graphical representation of compo-
nents; initially an empty default frame (called Frame1) will
be shown.

The visual component designer follows the top-down approach for
component creation. First, highest level architecture is designed.
The highest level architecture can implement two types of frames:

15

An ordinary frame — this case is used when the designed com-
ponent is supposed to be included in other components

The system frame — this case is used when the component will
be an application component; its frame is empty because
this is the highest level component encapsulating lower level
components and its frame has no interfaces (no delegation
and subsumption is used)

In our example, the latter is the case. To create an applica-
tion component, you have to use a special name SYSTEM for
the application frame. This is important for generating a cor-
rect CDL code for it forces the CDL-generator to leave the frame
out and generate the application architecture implementing the
system SOFA::Libs::Application frame.

The frame name can be set in the Frame tab in the Properties
window (under the name Type). Along with frame type, you can
set the following attributes: frame protocol, properties (which
are kind of component parameterization that can be done from
deployment descriptor) and settings for arrays. In our case, the
type will be set to SYSTEM, all other fields will be left blank.
Protocol is not specified for there is no communication on the
system frame.

As the next step, you need to set the name of the designed ar-

16

chitecture. Therefore switch to the Architecture tab and fill the
Type field with ATimeLogApp. The other field (Properties) leave
blank.

We want the application architecture to have two subcomponents:
a component that provides logging capabilities and a component
that requires them. In order to do that, go to the editor win-

dow and pick the second button from the left1 and put two
subcomponents on the SYSTEM frame2. Click on the particular
subcomponent, the Properties window will appropriately change
to reflect attributes of the given subcomponents. Set individual
properties similarly as in the previous case (i.e. frame names FLog

resp. FLogUtilizer) and architecture names ALogUtilizer resp. ALog-

WithTimeStamp. Set also the frame protocols:
?iLog.doLog* resp. !iLog.doLog*

Besides, in the General tab set names of the subcomponets to scLog

and scLogUtilizer3

These two subcomponents are supposed to communicate via an
interface dedicated for logging. Therefore click on the provided

1If you cannot understand the meaning of individual buttons in the toolbar from their
icons, leave the cursor on the particular button a bit longer and a descriptive hint appears

2Please, do not be confused by this; the subcomponents are, of course, put to the archi-
tecture

3Note that for an easy reading we use the following naming conventions: the interface,
frame and architecture types commence with their initial letter in capital (i.e. ”I” resp. ”F”
resp. ”A”) and instances with their non-capital initial letter; the ”sc” means a subcomponent
instance

17

interface button (the third from left) and place it onto the
scLog subcomponent and on the required interface button (the

fourth from left) and place it onto the scLogUtilizer subcom-
ponent. Now, click on one of the interfaces and the properties
windows changes to reflect it. Fill the type name ILog, the in-
stance name iLog. The bottom two properties allow you to more
closely specify the interfaces. After clicking on them, a ”. . .” but-
ton appears. Clicking on it, a new window appears where interface
protocol resp. interface structure (methods, . . .) can be specified.
Content of these fields will be copied into appropriate parts of
the generated CDL code 4. In our case, the source code is void
doLog(in string EventNumber); and the protocol is doLog*

In general, you should do the same actions with the other interface
too. However, since there is a restriction that only interfaces with
of the same type can be bound in SOFA, do not bother with
filling information for the other interface and press the button for

creating ties (the sixth from left) from the toolbar right away
and click on one of the interfaces and then click on the other. The
visual designer recognizes that the two interfaces are not the same
and offers you to select whether to adjust one of the interface to
the other or not to create the tie. Choose Set to ILog and the

4Without additional processing, i.e. no syntax checks will be done!!!

18

other interface will be appropriately adjusted (except the interface
instance name which can be arbitrary, so you are encouraged to
set its name to iLog manually.

Now, the highest level of the component hierarchy is done. So we
can start creating architectures of subcomponents. In our case,
the architecture of FLogUtilizer will be implemented by the under-
lying implementation language and therefore the scLogUtilizer sub-
component will not be further elaborated (it will be reflected by
the generated CDL code by the ”primitive” keyword in the archi-
tecture specification). However, the subcomponent scLog will have
a compound architecture that will contain components for working
with time stamps5. In order to define the compound architecture
of the subcomponent, double-click on the subcomponent (or al-
ternatively you can unfold the LoggingSofaApp node in the Explorer
window and double-click on the scLog node). The editor window
now displays the subcomponent as the main panel onto which you
can put subcomponents similarly as in the previous level. The
Properties window will appropriately change as well. Now put two
subcomponents onto the architecture of scLog and name them ap-
propriately (scDateTimeStamp, FDateTimeStamp and ADateTimeStamp

resp. scTimeLog, FTimeLog and ATimeLog).

Now you need to specify the frames by specifying their inter-
faces and creating ties. There will be one new interface: IDate-

TimeStampFormats that scTimeLog component to ask the scDateTimeS-

5The architecture was not named just ”ALog” but ”ALogWithTimeStamp” to better reflect
this fact

19

tamp component about various formats of date-time stamps. Its
source code might look like this: string EUFormat(); string
USFormat(); and its protocol like this: (EUFormat + USFor-
mat)*. The names of the interface can be iDTSFormats in both
cases. The scTimeLog subcomponent will provide the logging func-
tionality via the ILog (named e.g. iDTLog) interface which must
be provided by the subcomponent. The added value is that the
scTimeLog (in our case having a primitive architecture) is able to
provide (in its underlying implementation) logging enriched with
timestamps formatted according to instructions provided by the
scTimeLog. Now you must create ties similarly as described above.
After it is done, the final picture may look as follows:

The last action that remains to do is specifying frame protocols
of FDateTimeStamp and FTimeLog. Since the protocols result from
the communication on the frames’ interfaces, we left it until they
were specified. So, fill the following protocols in the Frame tabs of
the scDateTimeStamp resp. scTimeLog subcomponents:
(?iDTSFormats.EUFormat || ?iDTSFormats.USFormat)*

resp. ?iDTSLog.doLog{!iDTSFormats.EUFormat}*

At the very end of the visual component creation process, save

20

the results into the LoggingSofaApp.sofa file using the standard
File->SaveAll menu items.

Now, you are ready to generate the CDL source file. Click on the
node of the highest component and by clicking the right mouse
button you bring about the context menu. Choose Generate CDL

File as indicated in the picture bellow. The CDL file is generated.

2.4 Compiling CDL Files

Now you have a CDL source file in the editor window of the Net-
Beans IDE. To be able to compile it, you must be connected to
the TIR and the TIR must be set to read-write mode. See this
text.

Having focus on the Editor window, go to the Build menu of the
main pull-down menu of the NetBeans and choose Compile. Al-
ternatively you can press the respective hot-key (by default it is
F9).

21

You can watch results of the compilation in the Output window

which is by default bellow the Editor window. If the compilation
fails, the TIR is set to the read-only mode by aborting. So if
you want to re-compile, you must set the TIR to read-write mode
again (besides correcting the errors, of course). If the compilation
passes correctly, the TIR remains in the read-write mode. This is
because you are given a choice of either committing the results or
aborting them. It must be done explicitly as described in the next
section.

In our case, if you followed the instruction in this text, the com-
pilation should proceed without any error. Ignore warnings about
missing protocol in the system frame, it really should not have
any.

2.5 Using the SOFA TIR Browser

First, the SOFA TIR must be launched6. Check whether the TIR
properties in the Tools->Options menu are set correctly.

6Description how to do it is beyond the scope of this guide

22

If you follow the LoggingSofaApp example, you can set using and
testing protocol to true. A sample setting is shown in the picture
bellow.

Switch to the Editing workspace and in Explorer window to the
Runtime tab. Select SOFA TIR and click the right mouse button to
bring about the context menu. From the context menu choose
Add Connection.

23

A dialog appears into which you must enter names of the host and
port where your RMIRegistry runs.

Under the SOFA TIR node in the Explorer window, you can now
unfold sub-nodes and browse the content of the repository. Each
node represents an element of the CDL language. Right-clicking
on each node, a set context menu with a set of supported actions
appears. All nodes support displaying their properties. All nodes
of type ”container” (i.e. that contains sub-nodes) also support

24

refreshing their content.

However, the really useful action is the possibility to have the java
source code generated from CDL architectures. From historical
reasons, architectures are stored in the Provider core node. The
context menu obtained after right clicking on an architecture node
contains Generate builder and mapping as an additional item.

Choosing this item, Java mappings of interfaces the architecture
contains and a builder which among others contains Java code
reflecting ties between the interfaces is generated to the directory
that was chosen in options. So if you want to finish the example,
choose generation of the code for each of the architectures you
have created in this example so far. You are done.

2.5.1 Transactional nature of TIR

An important aspect about the TIR is that it has a transactional
manner. By default, the TIR is set to the read-only mode and
it cannot be modified. If we want add some additional elements
to it, we must set the repository to read-write mode starting a
transaction. This can be done by right-clicking the node with the
host name and port where the rmiregistry runs. A sample situation
is shown in the picture bellow:

25

When the Open work repository action is chosen and proceeds cor-
rectly, the icon of the node changes to a sheet with pen. Now we
can add additional elements into the repository, which is usually
done by compiling a CDL source file. Using the same context
menu, we can set the TIR to the read-only mode stopping the
transaction by choosing either Abort current session or Commit current

session from the context menu of the host-port node of an set the
TIR to the read-write mode.

26

Chapter 3

Troubleshooting

3.1 F.A.Q.

3.1.1 Security policy not set

Q: I want to connect to a TIR (using TIR -> Add connection in
the Runtime tab of the explorer window) and the
java.lang.SecurityException at org.netbeans.core-
.execution.TopSecurityManager.checkConnectImpl(. . .)
appears.
A: It is caused by the fact that you do not have set the security
policy for your JVM. The easiest remedy is creating a file
java.policy in your home directory that grants all permissions
(”grant permission java.security.AllPermission”). However, this
approach is not recommended due to security holes. For more
specific configuration information, see documentation to RMI
available within J2SDK.

3.1.2 Profile locked

Q: I want to open TIR for writing but the ”Profile locked”
exception occurs.
A: This exception may occur when a client crashed or finished

27

without aborting or committing a transaction in which case the
profile remains locked. You can abort the old session using
”Manage session” dialog:

1. Go to the Explorer window and select the Runtime tab.

2. Right-click the session node and choose ”Manage sessions”.

3. Select session you want to kill and click on ”Abort
connection”

28

	Module's Essentials
	Introduction
	License Conditions
	Availability
	Supported Versions of the Netbeans IDE

	Structure of the Module
	SOFA TIR Browser
	SOFA CDL Compiler
	Visual Designer
	Options for the Module

	The Module In Action
	Installing the Module
	A Sample Example
	Designing Components
	Compiling CDL Files
	Using the SOFA TIR Browser
	Transactional nature of TIR

	Troubleshooting
	F.A.Q.
	Security policy not set
	Profile locked

